All Issue

2018 Vol.30, Issue 2 Preview Page
July 2018. pp. 96-109
Computer simulation (CS) is a powerful tool to model transport phenomena, including fluid flows motions corresponding for the momentum, mass and energy transfer. CS has been widely used to simulate the temperature distribution during thermal processing of foods. In this paper, the background of thermal processing of food and the fundamentals of developing CS models are discussed. It also provides an overview of the current CS modeling studies of thermal processing in solid, liquid and liquid-solid mixtures. It is expected that the incredible fast growth in the use of CS in the food and bioprocessing industry will encourage engineers to develop CS models with high computational powder for designing industry-scale thermal processing systems and understanding the combined effect of thermal and non-thermal processing.
  1. Augusto, P. E. D., Pinheiro, T. F., Cristianini, M. (2010) Using computational fluid-dynamics (CFD) for the evaluation of beer pasteurization: effect of orientation of cans. Food Sci Technol 30: 980-986.10.1590/S0101-20612010000400022
  2. Bazdidi-Tehrani, F., Moghaddam, S., Aghaamini, M. (2018) On the validity of Boussinesq approximation in variable property turbulent mixed convection channel flows. Heat Transfer Eng 39: 473-491.10.1080/01457632.2017.1312902
  3. Bhuvaneswari, E., Anandharamakrishnan, C. (2014) Heat transfer analysis of pasteurization of bottled beer in a tunnel pasteurizer using computational fluid dynamics. Innovative Food Sci Emerging Technol 23: 156-163.10.1016/j.ifset.2014.03.004
  4. Boz, Z., Erdogdu, F. (2013) Evaluation of two-dimensional approach for computational modelling of heat and momentum transfer in liquid containing horizontal cans and experimental validation. Food Bioprod Process 91: 37-45.10.1016/j.fbp.2012.08.005
  5. Chen, X. D., Huang, H., Ghani, A. G. (2005) Thermal sterilization of liquid foods in a sealed container - developing simple correlations to account for natural convection. Int J Food Eng 1: 1-23.10.2202/1556-3758.1006
  6. Cordioli, M., Rinaldi, M., Copelli, G., Casoli, P., Barbanti, D. (2015) Computational fluid dynamics (CFD) modelling and experimental validation of thermal processing of canned fruit salad in glass jar. J Food Eng 150: 62-69.10.1016/j.jfoodeng.2014.11.003
  7. Datta, A. K., Teixeira, A. A. (1988) Numerically predicted transient temperature and velocity profiles during natural convection heating of canned liquid foods. J Food Sci 53: 191-195.10.1111/j.1365-2621.1988.tb10206.x
  8. Dhawan, S., Varney, C., Barbosa-Canovas, G. V., Tang, J., Selim, F., Sablani, S. S. (2014) Pressure-assisted thermal sterilization effects on gas barrier, morphological, and free volume properties of multilayer EVOH films. J Food Eng 128: 40-45.10.1016/j.jfoodeng.2013.12.012
  9. Dimou, A., Panagou, E., Stoforos, N. G., Yanniotis, S. (2013) Analysis of thermal processing of table olives using computational fluid dynamics. J Food Sci 78: E1695-E1703.10.1111/1750-3841.12277
  10. Dimou, A., Stoforos, N. G., Yanniotis, S. (2014) Effect of particle orientation during thermal processing of canned peach halves: a CFD simulation. Foods 3: 304-317.10.3390/foods302030428234321PMC5302362
  11. Dimou, A., Yanniotis, S. (2011) 3D numerical simulation of asparagus sterilization in a still can using computational fluid dynamics. J Food Eng 104: 394-403.10.1016/j.jfoodeng.2011.01.002
  12. Erdogdu, F., Tutar, M. (2011) Velocity and temperature field characteristics of water and air during natural convection heating in cans. J Food Sci 76: 119-129.10.1111/j.1750-3841.2010.01913.x21535663
  13. Erdogdu, F., Uyar, R., Palazoglu, T. K. (2010) Experimental comparison of natural convection and conduction heat transfer. J Food Process Eng 33: 85-100.10.1111/j.1745-4530.2008.00309.x
  14. Euler, L. (1761) Principia motus fluidorum. Novi Commentarii Acad Sc. Petropolitanae 6: 271-311.
  15. Farid, M., Ghani, A. A. (2004) A new computational technique for the estimation of sterilization time in canned food. Chem Eng Process 43: 523-531.10.1016/j.cep.2003.08.007
  16. Ghani, A. A., Farid, M. M. (2006) Using the computational fluid dynamics to analyze the thermal sterilization of solid-liquid food mixture in cans. Innovative Food Sci Emerging Technol 7: 55-61.10.1016/j.ifset.2004.07.006
  17. Ghani, A. G. A., Farid, M. M. (2005) A numerical simulation study on thermal sterilization of food in pouches using computational fluid dynamics (CFD). Assoc Comput Mach New Zealand Bull 1: 1-9.
  18. Ghani, A. G. A., Farid, M. M., Chen, X. D. (2002) Numerical simulation of transient temperature and velocity profiles in a horizontal can during sterilization using computational fluid dynamics. J Food Eng 51: 77-83.10.1016/S0260-8774(01)00039-5
  19. Ghani, A. G. A., Farid, M. M., Chen, X. D., Richards, P. (1999) Numerical simulation of natural convection heating of canned food by computational fluid dynamics. J Food Eng 41: 55-64.10.1016/S0260-8774(99)00073-4
  20. Hartel, R. W., Heldman, D. R. (1997) Principles of food processing. p. 10. Springer Science & Business Media: Berlin, Germany, 9780834212695.
  21. Holdsworth, S. D., Simpson, R. (2016) Computational fluid dynamics in thermal food processing. pp. 369-381. In: Holdsworth, S. D., Simpson, R., Eds. Thermal Processing of Packaged Foods. Springer: New York, USA, 9783319249025.10.1007/978-3-319-24904-9_1910.1007/978-3-319-24904-9_1710.1007/978-3-319-24904-9_18
  22. Kempe, L. L., Graikoski, J. T., Bonventre, P. F. (1957) Combined Irradiation-Heat Processing of Canned Foods: I. Cooked Ground Beef Inoculated with Clostridium botulinum Spores. Appl Microbiol 5: 292-295.13470852PMC1057309
  23. Kiziltas, S., Erdogdu, F., Palazoglu, T. K. (2010) Simulation of heat transfer for solid-liquid food mixtures in cans and model validation under pasteurization conditions. J Food Eng 97: 449-456.10.1016/j.jfoodeng.2009.10.042
  24. Koribilli, N., Aravamudan, K., Varadhan, M. A. (2011) Quantifying enhancement in heat transfer due to natural convection during canned food thermal sterilization in a still retort. Food Bioprocess Technol 4: 429-450.10.1007/s11947-009-0232-9
  25. Kumar, A., Bhattacharya, M. (1991) Transient temperature and velocity profiles in a canned non-Newtonian liquid food during sterilization in a still-cook retort. Int J Heat Mass Transfer 34: 1083-1096.10.1016/0017-9310(91)90018-A
  26. Kumar, A., Bhattacharya, M., Blaylock, J. (1990) Numerical simulation of natural convection heating of canned thick viscous liquid food products. J Food Sci 55:
  27. Lee, M. G., Yoon, W. B. (2014) Developing an effective method to determine the deviation of F value upon the location of a still can during convection heating using CFD and subzones. J Food Process Eng 37: 493-505.10.1111/jfpe.12107
  28. Lee, M. G., Yoon, W. B. (2016) Developing an effective method to determine the heat transfer model in fish myofibrillar protein paste with computer simulation considering the phase transition on various dimensions. Int J Food Eng 12:
  29. Lespinard, A. R., Mascheroni, R. H. (2012) Influence of the geometry aspect of jars on the heat transfer and flow pattern during sterilization of liquid foods. J Food Process Eng 35: 751-762.10.1111/j.1745-4530.2010.00624.x
  30. Moraga, N., Torres, A., Guarda, A., Galotto, M. J. (2011) Non-Newtonian canned liquid food, unsteady fluid mechanics and heat transfer prediction for pasteurization and sterilization. J Food Process Eng 35: 2000-2025.10.1111/j.1745-4530.2009.00542.x
  31. Mosna, D., Vignali, G. (2015) Three-dimensional CFD simulation of a “steam water spray” retort process for food vegetable products. Int J Food Eng 11: 715-729.10.1515/ijfe-2015-0062
  32. Naveh, D., Kopelman, I. J., Pflug, I. J. (1983) The finite element method in thermal processing of foods. J Food Sci 48: 1086-1093.10.1111/j.1365-2621.1983.tb09167.x
  33. Navier, C. L. M. H. (1823) Memoire sur les lois du mouvement des fluids. Memoires de I’Academie Royale des Sciences de I’Institut de France 6: 389-440.
  34. Norton, T., Sun, D. (2006) Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. Trends Food Sci Technol 17: 600-620.10.1016/j.tifs.2006.05.004
  35. Padmavati, R., Anandharamakrishnan, C. (2013) Computational fluid dynamics modeling of the thermal processing of canned pineapple slices and titbits. Food Bioprocess Technol 6: 882-895.10.1007/s11947-012-0892-8
  36. Park, H. W., Yoon, W. B. (2018) Effects of air movement in a hot air dryer on the drying characteristics of colored potato (Solanum tuberosum L.) using computational fluid dynamics. Int J Agric Biol Eng 11: 232-240.10.25165/j.ijabe.20181101.3293
  37. Paul, D. A., Anishaparvin, A., Anandharamakrishnan, C. (2011) Computational fluid dynamics studies on pasteurization of canned milk. Int J Dairy Technol 64: 305-313.10.1111/j.1471-0307.2010.00663.x
  38. Pflug, I. J. (1975) Procedures for carrying out a heat penetration test and analysis of the resulting data. Department of Food Science and Nutrition, University of Minnesota: Minneapolis, USA.
  39. Rao, M. A., Anantheswaran, R. C. (1988) Convective heat transfer to fluid foods in cans. Adv Food Res 32: 39-84.10.1016/S0065-2628(08)60285-2
  40. Rawajfeh, K., Albaali, A. G., Saidan, M., Abureden, S. (2013) Modeling of natural convection heating and biochemical changes in a viscous liquid canned food using computational fluid dynamics. Int J Food Sci Nutr Eng 3: 71-79.
  41. Scott, G., Richardson, P. (1997) The application of computational fluid dynamics in the food industry. Trends Food Sci Technol 8: 119-124.10.1016/S0924-2244(97)01028-510.1016/S0924-2244(97)87556-5
  42. Shafiekhani, S., Zamindar, N., Hojatoleslami, M., Toghraie, D. (2016) Numerical simulation of transient temperature profiles for canned apple puree in semi-rigid aluminum based packaging during pasteurization. J Food Sci Technol 53: 2770-2778.10.1007/s13197-016-2249-127478233PMC4951430
  43. Singh, A., Singh, A. P., Ramaswamy, H. S. (2015) Computational techniques used in heat transfer studies on canned liquid-particulate mixtures. Trends Food Sci Technol 43: 83-103.10.1016/j.tifs.2015.02.001
  44. Siriwattanayotin, S., Yoovidhya, T., Meepadung, T., Ruenglertpanyakul, W. (2006) Simulation of sterilization of canned liquid food using sucrose degradation as an indicator. J Food Eng 73: 307-312.10.1016/j.jfoodeng.2004.08.008
  45. Spanu, S., Vignali, G. (2016) Modelling and multi-objective optimisation of the VHP pouch packaging sterilisation process. Int J Food Eng 12: 739-752.10.1515/ijfe-2015-0061
  46. Stokes, G. G. (1851) On the effect of the internal friction fluids on the motion of pendulums, Vol. 9; Pitt Press: Cambridge, U.K.
  47. Stumbo, C. R., Purohit, K. S., Ramakrishnan, T. V. (1975) Thermal process lethality guide for low-acid foods in metal containers. J Food Sci 40: 1316-1323.10.1111/j.1365-2621.1975.tb01080.x
  48. Tutar, M., Erdogdu, F. (2012) Numerical simulation for heat transfer and velocity field characteristics of two-phase flow systems in axially rotating horizontal cans. J Food Eng 111: 366-385.10.1016/j.jfoodeng.2012.02.008
  49. Varma, M. N., Kannan, A. (2006) CFD studies on natural convective heating of canned food in conical and cylindrical containers. J Food Eng 77: 1024-1036.10.1016/j.jfoodeng.2005.07.035
  50. Vatankhah, H., Zamindar, N., Baghekhandan, M. S. (2015) Heat transfer simulation and retort program adjustment for thermal processing of wheat based Haleem in semi-rigid aluminum containers. J Food Sci Technol 52: 6798-6803.10.1007/s13197-015-1764-926396432PMC4573139
  51. Zenker, M., Heinz, V., Knorr, D. (2003) Application of ultrasound-assisted thermal processing for preservation and quality retention of liquid foods. J Food Protect 66: 1642-1649.10.4315/0362-028X-66.9.1642
  • Journal Title :Journal of Agricultural, Life and Environmental Sciences
  • Volume : 30
  • No :2
  • Pages :96-109
  • Received Date :2018. 06. 29
  • Accepted Date :2018. 07. 25
Journal Informaiton Agriculture and Life Sciences Research Institute Journal of Agricultural, Life and Environmental Sciences
  • NRF
  • crosscheck
  • crossref crossmark
  • crossref cited-by
  • crossref funder-registry
  • orcid
  • open access
  • ccl
Journal Informaiton Journal Informaiton - close